Bir çoxüzlü bucaq götürək və onun bütün tillərini kəsən müstəvi keçirək. Çoxüzlü bucaqın S təpəsinin aid olduğu yarımfəzada SABDEF çoxüzlüsü alınır. Bu çoxüzlünün bir üzü ABCDEF çoxbucaqlısı qalan üzləri isə bir təpəsi S olan ortaq təpəsi üçbucaqlıdır. ASB, BSC,........, FSA, belə çoxüzlülər piramida adlanır.
Ortaq təpəli üçbucaqlara piramidanın yan üzləri, onların birləşməsinə piramidanın yan səthi, çoxbucaqlıya piramidanın oturacağı, bütün yan üzlərin ortaq tərəfinə piramidanın yan tilləri, təpədən oturacaq müstəvisinə çəkilmiş perpendikulyara piramidanın hündürlüyü deyilir.
Riyaziyyatın Ən əsas həll olunmamış problemləri «Minilliyin Problemləri» — «Millenium Problems» adlanır. Bu ad altında 7 problem vardır ki, onlardan biri — Poinkare fərziyyəsi rusiyalı riyaziyyatçı Qriqori Yakovleviç Perelman tərəfindən 2010-cu ilin sentyabrında sübuta yetirilmişdir. Bu ad altında problemlərin həllinə Amerikanın Kley İnstitutu (Clay İnstitute) tərəfindən 1000000 USD civarında mükafat qoyulmuşdur. Lakin indi o məsələlərə girişməyəcəyik.
Əlavə Ədədlər Nəzəriyyəsi üzərindən bəzi problemləri nəzərinizə çatdırmaq istəyirəm.
1. Qoldbax hipotezi (Goldbach hypothesis):
«2-dən böyük cüt ədədlər 2 sadə ədədin cəmi şəklində göstərilə bilər.»
Maraqlısı burasındadır ki, bu fərziyyənin nə doğruluğu, nə də əksi isbat oluna bilib.
Alman riyaziyyatçısı Kristian Qoldbax məşhur riyaziyyatçı Leonard Eylerə (Leonhard Euler) 1742-ci il tarixli məktubunda bu fərziyyəni qeyd etmişdi.
2. Kollatz fərziyəsi (Collatz conjecture):
Fərziyyə belə ifadə olunur:
«Hər hansı bir müsbət tam (natural) ədəd:
1. Cütdürsə, 2-ə bölündükdə;
2. Təkdirsə, 3-ə vurulub üzərinə 1 əlavə etdikdə;
3. Və alınan təzə ədəd üzərində də bu əməliyyatları periodik şəkildə yerinə yetirsək, son ədəd mütləq 1 olacaqdır.»
Bu fərziyyənin əksi demək olar ki, mümkün deyil. Amma isbat edən də olmayıb. Bu fərziyyəni artıq nəzəriyyə kimi istifadə edərək, müəyyən ədəddən 1 ədədinin alınmasınadək proseslərin sayının hesablamasının tətbiqində araşdırmalar aparılır.
Alman riyaziyyatçısı olan Lotar Kollatz (Lothar Collatz) 1937-ci ildə, 27 yaşında ikən bu fərziyyəni irəli sürmüşdür və hələ də isbat edən olmamışdır.
Ardı var...
Müstəvi üzərində yerləşən nöqtədən eyni məsafədə olan nöqtələr çoxluğuna çevrə deyilir.
AO=OB=OC=R-çevrənin radiusudur.
Çevrə mövzusu üç hissədən ibarətdir:
Ø Çevrənin elementləri
Ø Çevrədə bucaq münasibətləri
Ø Çevrədə metrik münasibətlər